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Abstract
We explore in detail the properties of modulational instability (MI) and the generation of
soliton-like excitations in DNA nucleotides. Based on the Peyrard–Bishop–Dauxois (PBD)
model of DNA dynamics, which takes into account the interaction with neighbors in the
structure, we derive through the semidiscrete approximation a modified discrete nonlinear
Schrödinger (MDNLS) equation. From this equation, we predict the condition for the
propagation of modulated waves through the system. To verify the validity of these results we
have carried out numerical simulations of the PBD model and the initial conditions in the form
of planar waves whose modulated amplitudes are given by the examples studied in the MDNLS
equation. In the simulations we have found that a train of pulses are generated when the lattice
is subjected to MI, in agreement with the analytical results obtained in an MDNLS equation.
Also, the effects of the harmonic longitudinal and helicoidal constants on the dynamics of the
system are notably pointed out. The process of energy localization from a nonsoliton initial
condition is also explored.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nonlinear excitations (solitons, discrete breathers, intrinsic
localized modes, etc) have been drawing increasing attention
over recent years and are widely believed to be responsible
for several effects in molecular chains, such as charge and
thermal conductivity, energy transfer and localization, etc [1].
A particular interesting discrete system that support solitons
and localized modes is deoxyribonucleic acid, or DNA. In
this system, localization of energy has been suggested as
a precursor of the transcription bubble [2, 3], and moving
localized oscillations as a method of transport of information
along the double strand [4].

The idea that nonlinear excitations could play a role in the
dynamics of DNA has become increasingly popular. Englander
et al [5] first suggested a theory of soliton excitations as an
explanation of the open states of DNA. Later Yamosa [6]

proposed another soliton theory using a planar base-rotator
model that was further refined by Takeno and Homma [7],
who introduced a model allowing some discreteness effects to
be taken into account, and by Zhang [8], who improved the
model for base coupling. Among the processes that have been
described using bubbles and solitary waves one can find the
following: the binding of specific enzymes to DNA (e.g. DNA
polymerases, recombinases, helicases or RNA polymerases)
and the thermal evolution of enzyme-created bubbles [9], the
displacement of a bubble from the promoter to the coding
regions [4, 10, 11], the process of energy collection in the
active regions under enzyme action [12, 13] and the opening
of bubbles at the start sites of transcription [14, 15]. The use
of localized structure bubble-like structures in explaining these
phenomena sets the problem of their creation and stability.

In order to explain some aspects of DNA dynamics, a great
number of mathematical models have been proposed [10, 16].
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Yakushevich has proposed a model [10, 16] to describe
the DNA dynamics. This model was further improved by
Gaeta [17]. The Yakushevich model takes into account only
the unzipping of the helical structure. Another interesting
approach has been followed by Peyrard and Bishop (PB
model) [2], who proposed a model in order to study the
dynamics and thermodynamics of base pair opening in
DNA denaturation and transcription. In this model, the
double strand is equivalent to the Klein–Gordon chain, the
variables are the distances between nucleotides within each
base pair, and only short-range interactions due to the
stacking coupling are considered. Other DNA models ignore
these kinds of interactions and only consider long-range
interactions, whose origin lies in the dipole moments that
characterize the hydrogen bonds between the nucleotides [18].
The PB model was later improved by Dauxois, Peyrard
and Bishop [19–21]. Many authors have shown that the
most standard mechanism through which bright solitons or
solitary wave structures appear is through the activation of
modulational instability (MI) of plane waves [22]. For
this instability, a specific range of wavenumbers of plane-
wave profiles becomes unstable to modulations, leading to
an exponential growth of the unstable modes and eventually
to delocalization (upon excitation of such wavenumbers)
in momentum space. That is equivalent to delocalization
in position space, and hence the formation of localized,
coherent solitary wave structures [23]. In the above-mentioned
contexts, MI has been suggested to be responsible for energy-
localization mechanisms leading to the formation of large-
amplitude nonlinear excitations in hydrogen-bonded crystals
or DNA molecules [2, 24]. So, it is important and worthwhile
to study the properties of the MI in a nonlinear medium,
especially in DNA.

In what follows, we will focus on the effects of the
harmonic constants of the longitudinal and the helicoidal
springs on the PBD model. Particular attention will be paid
to the competition of these two parameters in the generation
of the solitonic structures through MI. Also, the energy
of localization will be studied. Indeed, in the context of
the ‘traditional’ NLS equation, perhaps the most standard
mechanism through which bright solitons and solitary wave
structures appear is through the activation of the MI of plane
waves. The MI is a general feature of continuum as well of
discrete nonlinear wave equations and its demonstration spans
a diverse set of disciplines, ranging from plasma physics [25],
electrical transmission lines [26], nonlinear optics [27] and
DNA molecule [22, 24], to cite just a few.

The rest of the paper is outlined as follows. After
briefly reviewing (in section 2) the PBD model, we will
derive the equation describing the propagation of modulated
waves in the molecule (the MDNLS equation), then through
the standard linear stability analysis, the MI criterion will be
presented as well as the threshold amplitude. In section 3, we
perform numerical experiments in order to confirm analytical
predictions and excellent agreement is obtained. Section 4 is
devoted to some concluding remarks.

2. The discrete nonlinear equation for the dynamics
and stability analysis

2.1. The discrete nonlinear equation for the dynamics of the
PBD model

The PB model has been used to study the processes of
transcription and replication as well as to describe thermal
denaturation of DNA molecule. The first model, elaborated
in 1989 [2], only considers short-range interactions due to
the stacking of adjacent base pairs. According to the PBD
model [2, 19–21], the DNA chain is treated as a perfectly
periodic structure with lattice period l. This means that the
masses of all the nucleotides and the corresponding interaction
parameters are assumed to be equal [6, 14]. This was
extensively elaborated in [21]. The PBD model takes only
transversal motions into consideration as well as the nearest-
neighbor harmonic interaction along the DNA chain. Since the
bases are connected one to another through hydrogen bonds,
the Morse potential is chosen because of its shape. Let yn

and zn be the transversal displacements of the nucleotides of
different strands at site n from their equilibrium positions.
Basically important helicoidal structure is taken into account
through the harmonic interaction of the nucleotides having the
coordinates yn and zn±h [28]. Inasmuch as the helix has a
corresponding pitch of about 10 base pairs per turn, we assume
h = 4 [28, 29]. The Hamiltonian of the system is written as
follows [2, 21, 28]:

H =
N∑

n=1

[
m

2
(ẏ2

n + ż2
n)+ S1

2
[(yn − yn−1)

2 + (zn − zn−1)
2]

+ S2

2
[(yn − zn+h)

2 + (yn − zn−h)
2] + V (yn − zn)

]
. (1)

Here S1 and S2 are the harmonic constants of the longitudinal
and helicoidal springs, respectively. The on-site potential,
announced to be the Morse one, takes the form V (yn − zn) =
D[e−a(yn−zn) − 1]2, where D is the dissociation energy and a
is a parameter homogeneous to the inverse of a length, which
sets the spatial scale of the potential. It is convenient to use the
coordinates rn and un for in-phase and out-of-phase motions,
defined as

rn = (yn + zn)/
√

2, un = (yn − zn)/
√

2. (2)

Obviously, rn describes the movement of the center of mass of
the nucleotide pair at site n, while un represents the stretching
of the pair. According to equations (1) and (2), we can
straightforwardly obtain two perfectly decoupled equations of
motion, linear for rn and nonlinear for un :

mr̈n = S1(rn+1 + rn−1 − 2rn)+ S2(rn+h + rn−h − 2rn) (3)

mün = S1(un+1 + un−1 − 2un)− S2(un+h + un−h + 2un)

+ 2
√

2a D e−a
√

2un (e−a
√

2un − 1). (4)

In this work, we are interested in the out-of-phase equation,
because it describes nonlinear waves, whereas the in-phase
equation describes linear waves (phonons). Expanding the
terms in the exponential, we get

ün = K1(un+1 + un−1 − 2un)− K2(un+h + un−h + 2un)

−ω2
g(un + αu2

n + βu3
n) (5)
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Figure 1. The linear dispersion relation ω = ω(k).
S1 = 0.04 eV Å

−2
, D = 0.15 eV, and a = 6.3 Å

−1
. The solid curve

is plotted for S2 = 0.0025 eV Å
−2

and the dashed one for
S2 = 0.01 eV Å

−2
.

where K1 = S1
m , K2 = S2

m , ω2
g = 4a2 D

m , α = − 3a√
2

and

β = 7a2

3 . The geometrical parameters of the model can be
straightforwardly fixed according to the available structural
data [30]. We selected values similar to those previously
considered for the fixed planes case, which have been discussed
elsewhere: the choice of the S1 parameter can be independently
derived [31] from the twist persistence length [32], while
the choice of the other two parameters was based [31] on a
comparison with mechanical denaturation experiments [32].
In particular, the important parameter D, which sets the main
energy scale, has been tuned to reproduce as closely as possible
the experimental value of the denaturation temperature TD =
350 K. The values of the parameters are m = 300 amu,
S1 = 0.04 eV Å

−2
, D = 0.15 eV and a = 6.3 Å

−1
[31, 33].

The appropriate linear dispersion relation, which is optical
in the present case, is described by the following relation:

ω2 = ω2
g + 4K1 sin2

(
k

2

)
+ 4K2 cos2

(
kh

2

)
. (6)

Figure 1 plots the above dispersion relation versus the
wavenumber k and we note different behaviors in the dynamics
of the base pairs with respect to the parameter S2. In figure 1,
the linear spectrum has a gap ω01 = (ω2

g + 4K2)
1/2 and an

upper cutoff frequency ωmax = (ω2
g + 4K1 + 4K2)

1/2. As
one increases the parameters S2, the dispersion curve oscillates
(dashed curve). This behavior is probably induced by the
competition between the longitudinal and helicoidal spring
constants (which becomes more important in this case). In the
rest of this paper, we assume that the gap angular frequency
ωg is larger than other frequencies present in the system, that
is ω2

g � 4(K1 + K2), so that any frequency mixing should be
avoided.

Several approaches are used nowadays to derive a DNLS
equation in nonlinear physical systems. The one used by

Kivshar and Peyrard [34] can be extended here but, since
the Morse potential is nonsymmetric, the method used by
Daumont et al [35] is more appropriate. In fact, it takes
into consideration the first harmonics and introduces a few
functions Fj,n , which bring out the importance of nonlinear
parameters. We then substitute into equation (5) the trial
solution

un(t) = F1,n(t) e−iωg t + F0,n(t)+ F2,n(t) e−2iωgt + c.c. (7)

The coefficients of e−iωgt lead to the following one-dimensional
MDNLS equation:

i
dF1,n

dt
+ P(F1,n+1 + F1,n−1 − 2F1,n)+ R(F1,n+h

+ F1,n−h + 2F1,n)+ Q|F1,n|2 F1,n = 0 (8)

where P , R and Q are given by

P = K1

2ωg
R = − K2

2ωg
Q = ωg

2

(
10α2

3
− 3β

)
.

(9)
The NLS equation is among the most important physical
models in the field of nonlinear waves. Besides its
fundamental value as a first-order nonlinear wave equation,
it is a nonintegrable model in the one-dimensional case [36]
and represents many different physical systems: from laser
wavepackets propagating in nonlinear material to matter
waves in Bose–Einstein condensates, gravitational models for
quantum mechanics, plasma physics or wave propagation in
geological systems, among others [37–39]. Here, one sees
that equation (8) is a general physical model which may have
applications to DNA. From equation (8), when S2 = 0, one
obtains the well known DNLS equation.

2.2. Linear stability analysis

We begin our analysis by considering the linear dispersion
properties of an MDNLS equation. To do so, we write
F1,n(t) = φ0 ei(kn−ω0 t), where the wavenumber k, the angular
frequency ω0 and the amplitude φ0 satisfy the dispersion
relation:

ω0 = 4P sin2

(
k

2

)
+ 4R cos2

(
kh

2

)
− Q|φ0|2. (10)

To examine the linear stability of the initial plane waves, we
look for a solution of the form

F1,n(t) = φ0[1 + Bn(t)] ei(kn−ω0 t) (11)

where the perturbation amplitude Bn(t) is assumed to be
small in comparison with the carrier wave amplitude φ0. The
perturbation Bn(t) verifies the following relation:

iḂn + P[(Bn+1 + Bn−1 − 2Bn) cos(k)

+ i(Bn+1 − Bn−1) sin(k)] + R[(Bn+h + Bn−h

− 2Bn) cos(kh)+ i(Bn+h − Bn−h) sin(kh)]
+ Q|φ0|2(Bn + B∗

n ) = 0. (12)

Furthermore, assuming a general solution of the above-
mentioned system of the form

Bn(t) = B1 ei(K n−�t) + B∗
2 e−i(K n−�∗t) (13)

3
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Figure 2. The threshold amplitude: (a) S2 � S2,cr and (b) S2 > S2,cr.

where the asterisk denotes complex conjugation, K and
� represent, respectively, the wavenumber and the angular
frequency of the perturbation amplitude, and B1 and B2 are
complex constant amplitudes. Inserting equation (13) into
equation (12) and after linearization around the unperturbed
plane wave, we obtain the linear homogeneous system for B1

and B2:

(
a11 +� a12

a21 a22 −�

) (
B1

B2

)
=

(
0
0

)
. (14)

The condition for the existence of nontrivial solutions of
this linear homogeneous system is given by a second-order
equation for the frequency �, that is

�2 + (a11 − a22)�+ a12a21 − a11a22 = 0 (15)

with

a11 = −2P[sin(K ) sin(k)− (cos(K )− 1) cos(k)]
− 2R[sin(K h) sin(kh)− (cos(K h)− 1) cos(kh)]
+ Q|φ0|2

a12 = a21 = Q|φ0|2
a22 = 2P[sin(K ) sin(k)+ (cos(K )− 1) cos(k)]

+ 2R[sin(K h) sin(kh)+ (cos(K h)− 1) cos(kh)]
+ Q|φ0|2.

Equation (15) can be rewritten as

(�1)
2 = (�− 2P sin(K ) sin(k)− 2R sin(K h) sin(kh))2

= 8

[
P sin2

(
K

2

)
cos(k)+ R sin2

(
K h

2

)
cos(kh)

]

×
[

2P sin2

(
K

2

)
cos(k)+ 2R sin2

(
K h

2

)
cos(kh)

− Q|φ0|2
]
. (16)

An instability will be developed in the molecule if the right-
hand side of this equation becomes negative, i.e. the perturbed

wave is unstable only if
[

P sin2

(
K

2

)
cos(k)+ R sin2

(
K h

2

)
cos(kh)

]

×
[

2P sin2

(
K

2

)
cos(k)+ 2R sin2

(
K h

2

)
cos(kh)

− Q|φ0|2
]
< 0. (17)

Equation (17) is the MI criterion of our system. The
above MI criterion gives us the possibility to express the initial
amplitude |φ0| as a function of the threshold amplitude |φ0,cr|.
Therefore, a plane wave introduced in the system becomes
unstable if the initial amplitude |φ0| exceeds the threshold
amplitude |φ0,cr| defined as follows:

|φ0|2 � |φ0,cr|2 = 2

Q

[
P sin2

(
K

2

)
cos(k)

+ R sin2

(
K h

2

)
cos(kh)

]
. (18)

In the long-wavelength limit, when k � 1 and K � 1, we
deduce from the above threshold amplitude that

P K 2 + RK 2h2

4
� 0 �⇒ S2 � S2,cr = S1

h2
. (19)

Figure 2 shows how the value of the threshold amplitude |ψ0|
depends on the helicoidal spring constant S2. In fact, when
the helicoidal spring constant S2 is lower than S2,cr we have
only one satellite side band (see figure 2(a)). But, when
S2 > S2,cr, we observe an explosion of the threshold amplitude
into satellite side bands (see figure 2(b)). One can say that, as
the coefficient of the helicoidal coupling becomes important,
there is an explosion of the instability domain. We also note
that the magnitude of the threshold amplitude has increased in
this case, predicting, indubitably, an increase of the amplitude
under modulation, which causes large oscillations of the cells.

Let us remark that, when we set k = 0, there are two cases.

• For |ψ0|2 < |ψ0,cr|2 and S2 � S2,cr, the waves are
unstable with respect to any modulation as shown in
figure 3(a) (solid line) in the interval K ∈ [0, π/2]

4
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Figure 3. Variation versus K of (�1)
2 = (�− 2P sin(K ) sin(k)− 2R sin(K h) sin(kh))2 for the modulation waves (k = 0) as the wave

crosses the critical value |ψ0,cr|: (a) |ψ0|2 < |ψ0,cr|2 and (b) |ψ0|2 > |ψ0,cr|2.

Figure 4. Regions of modulational instability/stability (�1)
2 = (�− 2P sin(K ) sin(k)− 2R sin(K h) sin(kh))2 for |ψ0|2 < |ψ0,cr|2:

(a) S2 � S2,cr, (b) S2 > S2,cr.

and, for S2 > S2,cr, the system may be in the interval
[3π/10, π/2]. For the same case, wave instability is
predicted in [3π/10, π/2] as shown in figure 3(a) (dashed
line).

• For |ψ0|2 > |ψ0,cr|2, there is a marginal instability as
depicted in figure 3(b) (solid curve), as S2 � S2,cr, but, for
S2 > S2,cr, the stability region depicted in the case |ψ0|2 <
|ψ0,cr|2 is still present (dashed curve). Figure 4 presents
the diagram of instability/stability in the (k, K ) plane.
Figure 4(a) shows for the case S2 � S2,cr that the molecule
is stable in the region (k ∈ [0.6π, π], K ∈ [0.4π, π])
labeled around the point S1. Next, for S2 > S2,cr the
molecule presents three points (S1, S2, S3) around which
the system is stable as viewed in figure 4(b).

3. Numerical investigations

According to the analytical results discussed in section 2, the
stability of a plane wave with wavenumber k modulated by
a small-amplitude wave of wavenumber K is determined by
the instability criterion (17). When this relation is fulfilled,
we expect that the system exhibits an instability as predicted
analytically, which leads to the self-induced modulation of an
input plane wave with the subsequent generation of localized
pulses [22–27, 34, 35]. Thus, it becomes of interest to
investigate the nature of formation of different wave patterns
that may arise by the MI process in the PBD model of
a DNA molecule during the evolution of the initial waves
through the system. However, the linear stability analysis has
been obtained through an MDNLS equation, which is only

5
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Figure 5. Dynamics of modulated waves as a function of time (t.u.) showing the MI of slowly modulated plane waves for S2 � S2,cr.
(a) Soliton-like objects in the molecule at base pair 600; (b) soliton-like objects in the molecule at base pair 1500.

Figure 6. Dynamics of modulated waves as a function of time (t.u.) showing the MI of slowly modulated plane waves for S2 > S2,cr;
(a) soliton-like objects in the molecule at base pair 600; (b) soliton-like objects in the molecule at base pair 1500.

an approximate description of the equation of motion (4).
Consequently, the linear stability analysis can only detect
the onset of instability. In order to check the validity of
our analytical approach and to determine the evolution of
the system beyond the instability point, we have performed
numerical simulations of the equation of motion (4) with a
given initial condition. The system has been integrated with
a fourth-order Runge–Kutta scheme with a timestep chosen
to conserve the energy to an accuracy better than 0.005. The
number of base pairs is chosen in order to avoid wave reflection
at the end of the molecule. We chose as an initial condition a
linear wave with a slightly modulated amplitude:

un(t = 0) = φ0[1 + 0.01 cos(K n)] cos(kn). (20)

We have chosen φ0 = 0.5, k = 0.2π and K = 0.4π .
When the effects of the first neighbors are more important

in the system S2 � S2,cr, according to figure 4(a) the
corresponding point labeled by (k = 0.2π, K = 0.4π ) lies
in the instability zone. Therefore, we expect the modulated
wave to be unstable. The time evolution of the initial wave
launched through the system can be viewed in figure 5 for the
base pairs 600 and 1500, respectively. As predicted by the
analytical results the initial wave is disintegrated into a train of
pulses. Figure 5(a) presents the propagation of the wave at base
pair 600. At this base pair, one sees that the initial wavepacket
disintegrates progressively as time increases. Further, at
base pair 1500 we obtain the same phenomena. But here,
the wavepacket disintegrates with an uniform amplitude and
wavelength. When the effects of neighbors become more
important in the system (S2 > S2,cr), one obtains the results
depicted in figure 6 at the same base pair. From figure 4(b),
we see that the corresponding point (k = 0.2π, K = 0.4π )

6
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Figure 7. Energy localization (a) S2 � S2,cr; (b) S2 > S2,cr.

is also located in the instability zone. One sees that the initial
wave predicted to be unstable against the modulation break up
into a pulse train. But the amplitude of waves increases as
the time increases. We just see that, when the MI conditions
are fulfilled, due to the balance between nonlinearity and
dispersion, the initial wave breaks into pulse trains. The
solitonic excitation of the pulse train has envelope functions
with a familiar shape of the theory of soliton-like objects. Each
element of the train has the shape of a soliton-like object. But,
in contrast to solitons, they emerge as a solution of a time-
dependent classical equation of motion. It was suggested a
long time ago that solitons could be used to carry data at
a very high rate, because of their ability to overcome the
dispersion limitation through a balance between the self-phase
modulation and dispersion effects [40]. In fact, soliton pulses
are known to have many other desirable properties, such as
their robustness against small changes in the pulse shape or
amplitude around the exact soliton profile leading to treat such
changes only as small perturbations on soliton propagation.
The existence of discrete breathers in the PB model of DNA
has been suggested by Dauxois [28, 29]. Afterward, numerical
simulations performed by Dauxois [29, 33] suggested that
localized oscillations can be precursors of bubbles that appear
in the thermal denaturation of DNA.

To study the localization of energy in the PBD model,
we would look for a solution for which at least a part of
the initial energy is stored in permanent localized structures.
Indeed, when the MI conditions are fulfilled in a system,
one can obtain a localized concentration of energy. In this
sense, Daumont [35] and coworkers [41] have shown that the
discreteness of the system causes the instability of the extended
solutions. They tend to self-modulate evolving to localized
soliton-like modes that interact nonelastically and grow the
largest ones at the expense of the smallest [42]. It gives a
possible path to the collecting of energy. Thermal fluctuations,
which exist in the molecule due to the physiological
temperature, are shown to be a pathway to energy localization
and formation of localized structures [41, 43]. We have studied

the energy of localization through the density of energy given
by

En = 1
2 mu̇2

n + 1
2 S1[(un − un−1)

2 + (un+1 − un)
2]

+ 1
2 S2[(un + un−h)

2 + (un+h + un)
2]

+ D(e−a
√

2un − 1)2. (21)

With the conditions of figure 5 (S2 < S2,cr, k = 0.2π ,
K = 0.4π ), we know that the system is modulationally
unstable and we have obtained the formation of localized
structures in the molecule. Given a nonsoliton initial
condition (20), the system can group some of the energy in
soliton-like structures (see figure 6) while the rest of the energy
is spread in the form of radiation, as shown in figure 7(a). Then,
after a transient time, we will again have a robust localization
of energy in the system. In this case, the energy is located
along all the base pairs and for some specific time. But,
for (S2 > S2,cr, k = 0.2π , K = 0.4π ) which is the case
of figure 6, one can see from figure 7(b) that the energy is
effectively localized in some particular sites of the molecule.
We also remark that this localization of energy has happened
with a certain spatiotemporal recurrence. From figures 5, 6
and 7 one can really say that the present process of localization
of energy is linked to the MI process.

4. Conclusion

In the framework of the PBD model of a DNA molecule, we
have shown, using the so-called semidiscrete approximation,
that an MDNLS equation is a general physical model which
may have application to DNA dynamics. Through the linear
stability analysis, we have predicted the existence of soliton-
like structures in the DNA molecule. We have obtained that,
for S2 < S2,cr, one retrieves the results obtained by Kivshar and
Peyrard [34] for a standard DNLS equation (see figure 3). The
most interesting feature comes from the case S2 > S2,cr, where
both the amplitude and regions of MI change considerably
(figures 2(b), 3 and 4(b)). There is an explosion of side

7
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bands when the helicoidal spring constant is greater than the
longitudinal one.

Numerical experiments have been carried out in order to
confirm the analytical predictions. It has been observed that,
in the case where S2 � S2,cr, there is an MI since the initial
modulated plane wave breaks into a train of pulses and soliton-
like objects. Their amplitude, in comparison to the frustrated
case (S2 > S2,cr), is small. This can be analyzed as the
action of the waves flowing in the molecule and which plays
an important role in the conformational concerns taking place
in the B-DNA molecule. On the other hand, the increase in the
amplitude of the wave trains due to frustration mainly describes
the action of RNA polymerase which breaks progressively the
hydrogen bonds for the messenger RNA to come and copy the
genetic code. We believe that the existence and formation of
solitons in the DNA molecule could be a proper candidate
to explain how data are exchanged during basic biological
phenomena such as transcription and replication. As is well
known, for the hydrogen bond to be broken, there should be a
concentration of the enzyme and of the energy brought through
the hydrolysis of ATP. This explains the form of figure 6, which
at the beginning of the wave propagation is thin and has their
amplitudes increased. More precisely, this is the interaction
between DNA and RNA polymerase when DNA opens locally.
In need of clarity, the energy density has been represented and,
as a first remark, the quantity of energy involved is, in the
unfrustrated case, low compared to the energy involved in the
frustrated case. There is also effective energy localization in
the second case, so as to indicate the importance of frustration
in the local opening of DNA strands. This has been pointed
out by Kapri et al [44] who studied the force-induced first-
order transition in the DNA lattice model. According to those
authors, fluctuating force unzips DNA by a gradual increase
of bubble size. This is only possible if the various energy
releasers concentrate on specific sites without fluctuating back
and forth with, as a result, unzipping and then breaking the
strong hydrogen bonds. In our opinion, there is more to
explore in the B-DNA model in the way one could carry out
the influence of resonance mode on energy and information
transfer in DNA. There would be a great deal of interest in
looking at the two-component case, since in real DNA, the two
strands are different but complementary.
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